Cancer-predisposing mutations within the RING domain of BRCA1: loss of ubiquitin protein ligase activity and protection from radiation hypersensitivity.

نویسندگان

  • H Ruffner
  • C A Joazeiro
  • D Hemmati
  • T Hunter
  • I M Verma
چکیده

BRCA1 is a breast and ovarian cancer-specific tumor suppressor that seems to be involved in transcription and DNA repair. Here we report that BRCA1 exhibits a bona fide ubiquitin (Ub) protein ligase (E3) activity, and that cancer-predisposing mutations within the BRCA1 RING domain abolish its Ub ligase activity. Furthermore, these mutants are unable to reverse gamma-radiation hypersensitivity of BRCA1-null human breast cancer cells, HCC1937. Additionally, these mutations within the BRCA1 RING domain are not capable of restoring a G(2) + M checkpoint in HCC1937 cells. These results establish a link between Ub protein ligase activity and gamma-radiation protection function of BRCA1, and provide an explanation for why mutations within the BRCA1 RING domain predispose to cancer. Furthermore, we propose that the analysis of the Ub ligase activity of RING-domain mutations identified in patients may constitute an assay to predict predisposition to cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic analysis of BRCA1 ubiquitin ligase activity and its relationship to breast cancer susceptibility.

The N-terminus of the Breast Cancer-1 predisposition protein (BRCA1) associates with the BRCA1-associated RING domain-1 protein (BARD1) to form a heterodimer, which exhibits ubiquitin ligase activity that is abrogated by known cancer-associated BRCA1 missense mutations. The majority of missense substitutions identified in patients with a personal or a family history of disease have not been fol...

متن کامل

Binding and recognition in the assembly of an active BRCA1/BARD1 ubiquitin-ligase complex.

BRCA1 is a breast and ovarian cancer tumor suppressor protein that associates with BARD1 to form a RINGRING heterodimer. The BRCA1BARD1 RING complex functions as an ubiquitin (Ub) ligase with activity substantially greater than individual BRCA1 or BARD1 subunits. By using NMR spectroscopy and site-directed mutagenesis, we have mapped the binding site on the BRCA1BARD1 heterodimer for the Ub-con...

متن کامل

In Vitro Enhanced Sensitivity to Cisplatin in D67Y BRCA1 RING Domain Protein

BRCA1 is a tumor suppressor protein involved in maintaining genomic integrity through multiple functions in DNA damage repair, transcriptional regulation, cell cycle checkpoint, and protein ubiquitination. The BRCA1-BARD1 RING complex has an E3 ubiquitin ligase function that plays essential roles in response to DNA damage repair. BRCA1-associated cancers have been shown to confer a hypersensiti...

متن کامل

Estrogen receptor is a putative substrate for the BRCA1 ubiquitin ligase

The breast cancer suppressor protein, BRCA1, is a ubiquitin ligase expressed in a wide range of tissues. However, inheritance of a single BRCA1 mutation significantly increases a woman’s lifetime chance of developing tissue-specific cancers in the breast and ovaries. Recently, studies have suggested this tissue specificity may be linked to inhibition of estrogen receptor (ER ) transcriptional a...

متن کامل

Structure-Function of the Tumor Suppressor BRCA1

BRCA1, a multi-domain protein, is mutated in a large percentage of hereditary breast and ovarian cancers. BRCA1 is most often mutated in three domains or regions: the N-terminal RING domain, exons 11-13, and the BRCT domain. The BRCA1 RING domain is responsible for the E3 ubiquitin ligase activity of BRCA1 and mediates interactions between BRCA1 and other proteins. BRCA1 ubiquitinates several p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 98 9  شماره 

صفحات  -

تاریخ انتشار 2001